
AD-Ai52 924 CLEANROOM SOFTWARE DEVELOPMENT: AN EMPIRICAL EVALUATION i/t
(U) MARYLAND UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE
R N SELBY ET RL FEB 85 TR-14i5 RFOSR-TR-85-8292

UNCLASSIFIED F49628-88-C-08ei F/G 9/2 NL

MEEE.....

IH". --

2.

MICROCOPY RESOLUTION TEST CHART
NAT ONAL BUREAU OF STANDARDS 1963-A

1q

'

:-..-...- • -

• .i L " " % " ' i . , . -, . " , .- -, - -

FIEPRODUCED AT G VT'RiXPL=; ?1

AFOS -TR 3. .. 0 2 9 2 CxZ

On Technical Report TR-1415 February 1985

In CLEANROOM Software Development:
An Empirical Evaluation

Richard W. Selby, Jr.

IVictor R. Basili

F. Terry Baker

Department of Computer Science

University of Maryland
College Park

COMPUTER SCIENCE
TECHNICAL REPORT SERIS

DTIC
ELECTE
APR26 1985

S UNIVERSITY OF MARYLAND
* ;COLLEGE PARK, MARYLAND

.j 20742
ApProved for publio releasi

distrlbution unnlited.

85 4 2 112

UNCLASSIFIED

SECURITV CLASSIFICATIO1- O THIS PAGE

REPORT DOCUMENTATION PAGE

is REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED

2. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public releaseT distribution

2b OECLASSIFICATION/DOWNGRADING SCHEDULE unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

TR-1415 AFOSR-TR 8:5-0292

6. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION

University of Maryland (If applicabe)
Air Force Office of Scientific Research

6c. ADDRESS (City. Slate and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

Department of Computer Science Directorate of Mathematical & Information
College Park MD 20742 Sciences, Bolling AFB DC 20332-6448

@a. NAME OF FUNDING/SPONSORING &b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

AFOSR NM F49620-80-C-0001
Be ADDRESS lCity. Stale and ZIP Code) 10 SOURCE OF FUNDING NOS

PROGRAM PROJECT TASK WORK UNIT

ELEMENT NO. NO. NO. NO.

Bolling AFB DC 20332-6448 61102F 2304 A2
11. TITLE (include Security Clasification)

CLEANROOM SOFTWARE DEVELOPMENT: AN EMPIRICAL EVALUATION
12. PERSONAL AUTHORIS)

Richard W. Selby. Jr.. Victor R. Basili and F. Terry Baker
13. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr. Mo.. Day) 15 PAGE COUNT

Technical FROM _ TO FEB 85 29
16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if neceMary and identify by block number)

FIELD GROUP SUB GR Software development methodology; off-line software review;
software measurement; methodology evaluation; software
management; empirical study. -...

19 ABSTRACT (Continue on reverse if necessary and identify by block number,

,The Cleanroom software development approach is intended to produce highly reliable software
by integrating formal methods for specification and design, complete off-line development,
and statistically baged testing. In an empirical study, 15 three-person teams developed
versions of the same software system -(800-2300 source lines ten teams applied Cleanroom,
while five applied a more traditional approach. This analysis characterizes the effect of
Cleanroom on the delivered product, the software development process, and the developers.
The major results of this study are (1) most developers were able to apply the techniques
of Cleanroom effectively; (2) the Cleanroom teams' products met system requirements more
completely and had a higher percentage of successful test cases; (3) the source code
developed using Cieanroom had more comments and less dense complexity; (4) the use of
Cleanroom successfully modified aspects of development style; and (5) most Cleanroom
developers indicated they would use the approach again. ' - t,. .

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLAPSIFIfD/UNLIMITED X) SAME AS RPT. [OTIC USERS C UNCLASSIFIED

22s. NA - OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL

(Include .4 Aa Code

CPT John P. Thomas, Jr. (202) 767- 5026 NM

D' FORM 1473,83 APR 8 E DITION4 F I JAN 2iS OBSOLIE1 2 UNCLASSIFIED
* ISECURITY CLASSIFICATION OF THIS PAGE

- - -

Technical Report TR-1415 February 1985

CLEANROOM Software Development:
An Empirical Evaluation

Richard W. Selby, Jr.
Victor R. Basili
F. Terry Baker

Department of Computer Science
University of Maryland

College Park

S

DTIC
ELECTE
APR 26 I

B

KEYWORDS: software development methodology, off-line software review,
software measurement, methodology evaluation, software management,

*O empirical study

* Research supported in part by the AFOSR Contract AFOSR-F 49620-80-C0001
to the University of Maryland. Computer support provided in part by the

Computer Science Center at the University of Maryland.

• NO TI '

... . _ ION STA TE MENT A
Appuov. ks pubb l~1ojq ~rI

DwsuibudmO UnIhnited Crie.f, G T vj5 io

ABSTRACT

The Cleanroom software development approach Is Intended to produce highly rell-

able software by integrating formal methods for specification and design, complete off-

line development, and statistically based testing. In an empirical study, 15 three-person

teams developed versions of the same software system (800 - 2300 source lines); ten

teams applied Cleanroom, while five applied a more traditional approach. This analysis

characterizes the effect of Cleanroom on the delivered product, the software develop-

ment process, and the developers. The major results of this study are 1) most develop-

* ers were able to apply the techniques of Cleanroom effectively; 2) the Cleanroom teams'

products met system requirements more completely and had a higher percentage of suc-

cessful test cases; 3) the source code developed using Cleanroom had more comments

and less dense complexIty; 4) the use of Cleanroom successfully modified aspects of

development style; and 5) most Cleanroom developers Indicated they would use the

approach again.

9 ', 'ZI, 9'Y Fr

El

• , iA , .' -- '
"to,,';

0.:

Table of Contents

1I Introduction ... 1

2 Cleanroom Software Development .. . 1

2.1 Investigation Goals .. 3

3 Em pirical Study Using Cleanroom ... 4

3.1 Case Study Description .. 5

3.2 Operational Testing of Projects ... 7

4 Data Analysis and Interpretation ... 8

4.1 Characterization of the Effect on the Product Developed 9

4.1.1 Operational System Properties .. .

4.1.2 Static System Properties ... 12

4.1.3 Contribution of Programmer Baclcground ... 14

4.1.4 Summary of the Effect on the Product Developed 15

4.2 Characterization of the Effect on the Development Process 15

4.2.1 Summary of the Effect on the Development Process 20

4.3 Characterization of the Effect on the Developers ... 20

4.3.1 Summary of the Effect on the Developers ... 23

4.4 Distinction Among Teams ... 23
5 Conclusions .. 24

6 Acknowledgement .. 26

7 Appendix A . .. 26

8 References .. 27

I

4

•

1. Introduction

The need for discipline In the software development process and for high quality

software motivates the Cleanroom software development approach. In addition to

Improving the control during development, this approach Is Intended to deliver a pro-

duct that meets several quality aspects: a system that conforms with the requirements, a

system with high operational reliability, and source code that Is easily readable and

modifiable.

Section II describes the Cleanroom approach and a framework of goals for charac-

terizIng its effect. Section III presents an empirical study using the approach. Section

rV gives the results of the analysis comparing projects developed using Cleanroom with

those of a control group. The overall conclusions appear In Section V.

2. Cleanroom Software Development

The Federal Systems Division of IBM [Dyer 82, Dyer & Mills 82] presents the

Cleanroom software development method as a technical and organizational approach to

developing software with certifiable reliability. The Idea Is to deny the entry of defects

during the development of software, hence the term "Cleanroom." The focus of the

method is imposing discipline on the development process by Integrating formal methods

for specification and design, complete off-line development, and statistically based test-

Ing. These components are intended to contribute to a software product that has a high

probability of zero defects and consequently a high measure of operational reliability.

The mathematically-based design methodology of Cleanroom Includes the use of

structured specifications and state machine models [Ferrentlno & Mills 77]. A systems

engineer Introduces the structured specifications to restate the system requirements pre-

clsely and organize the complex problems Into manageable parts [Parnas 72]. The

specifications determine the "system architecture" of the Interconnections and groupings

of capabilities to which state machine design practices can be applied. System imple-

mentatlon and test data formulation can then proceed from the structured specifications

Independently.

The right-the-first-time programming methods used In Cleanroom are the Ideas of

functionally based programming In [Mills 72b, Linger, Mills & Witt 70]. The testing

process Is completely separated from the development process by not allowing the

developers to test and debug their programs. The developers focus on the techniques of

code Inspections [Fagan 71, group walkthroughs [Myers 781, and formal verification

[Hoare 69, Linger, Mills & Witt 79, Shankar 82, Dyer 831 to assert the correctness of

their Implementation. These constructive techniques apply throughout all phases of

development, and condense the activities of defect detection and Isolation Into one

operation. This discipline Is Imposed with the Intention that correctness Is "designed"

Into the software, not "tested" In. The notion that "Well, the software should always

be tested to find the faults" Is eliminated.

In the statistically based testing strate-,y of Cleanroom, Independent testers simu-

late the operational environment of the system with random testing. This testing pro-

cess Includes deflnlng the frequency distribution of Inputs to the system, the frequency

distribution of different system states, and the expanding hierarchy of developed system

capabliltles. Test cases then are chosen randomly and presented to the series of product

releases, while concentrating on functions most recently delivered and maintaining the

2

overall composite distribution of Inputs. The Independent testers then record observed

failures and determine an objective measure of product reliability. It Is believed that

the prior knowledge that a system will be evaluated by random testing will affect system

reliability by enforcing a new discipline Into the system developers.

2.1. Investigation Goals

Some Intrigulng aspects of the Cleanroom approach Include 1) development without

testing and debugging of programs, 2) Independent program testing for quality

assurance (rather than to find faults or to prove "correctness" [Howden 76]), and 3)

certlfcation of system reliability before product delivery. In order to understand the

effects of using Cleanroom, the following three goals are proposed: 1) characterize the

effect of Cleanroom on the delivered product, 2) characterize the effect of Cleanroom on

the software development process, and 3) characterize the effect of Cleanroom on the

developers. -An application of the goal/question/metric paradigm [Basili & Selby 84,

Basill & Welss 84 leads to the framework of goals and questions for this study appear-

Ing In Figure 1. The empirical study executed to pursue these goals Is described In the

following section.

3

-. ~V -17 -1 11 .Ic 2. w .

Figure 1. Framework of goals and questions for Cleanroom development approach

analy'sis.

1. Characterize the effect of Cleanroom on the delivered product.

A-%. For Intermediate and novice programmers building a small system, what were

the operational properties of the product?
1. Did the product meet the system requirements?
2. How did the operational testing results compare with those of a control

group?
B. Vhat were the static properties of the product?

1. Were the size properties of the product any different from what would be

observed In a traditional development?
2. %Aere the readability properties of the product any different?
3. Was the control complexity any different?
4. Was the data usage any different?
5. Was the implementatlon language used any differently?

C. What contribution did programmer background have on the final product quali-
ty?

II. Characterize the effect of Cleanroom on the software development process.
A. For Intermediate and novice programmers building a small system, what tech-

niques were used to prepare the developing system for testing submissions?
B. What role did the computer play In development?
C. Did they meet their delivery schedule?

Il. Characterize the effect of Cleanroom on the developers.
A. When Intermediate and novice programmers built a small system, did the

developers miss the satisfaction of executing their own programs?
1. Did the missing of program execution have any relationship to programmer

background or to aspects of the delivered product?
B. How was the design and coding style of the developers affected by not being able

to test and debug?
C. Would they use Cleanroom again?

3. Empirical Study Using Cleanroom

This section describes an empirical study comparing team projects developed using

Cleanroom with those using a more conventional approach.

4

3.1. Case Study Description

Subjects for the empirical study came from the "Software Design and Develop-

ment" course taught by F. T. Baker and V. R. Basill at the University of Maryland In

he Falls of 1982 and 1983. The Initial segment of the course was devoted to the

presentation of several software development methodologies, Including top-down design,

modular specification and design, PDL, chief programmer teams, program correctness,

;)de reading, walkthroughs, and functional and structural testing strategies. For the

latter part of the course, the Individuals were divided Into three-person chief program-

mer teams for a group project [Baker 72, Mvillls 72a, Baker 81]. We attempted to divide

th: teams equally according to professional experience, academic performance, and

Implementation language experience. The subjects had an average of 1.6 years profes-

sional experience and were computer science majors with junior, senior, or graduate

standing. Figure 2 displays the distribution of the subjects' professional experience.

Flgtre 2. Subjects' professional experience In years.

x
x x
x x x x
x xxxx x
x xxxxx x x x
x xxxxx x xx xx xxxx xx x x

0 1 2 3 4 5 6 7

A requirements document for an electronic message system (read, send, malling

lists, authorized capabilities. etc.) was distributed to each of the teams. The project was

to be completed In six weeks and was expected to be about 1200 lines of Simpl-T source

5

-~~~ W-1 V .. r '

[BasIli & Turner 76]. ' The development machine was a Univac 1100/82 running EXEC

VIII, with 1200 baud Interactive and remote access available.

The ten teams in the Fall 1982 course applied the Cleanroom software development

approach, while the five teams In the Fall 1983 course served as a control group (non-

Cleanroom). All other aspects of the developments were th- same. The two groups of

teams were not statistically different In terms of professional experience, academic per-

formance, cr Implementation language experience. If there were any bias between the

two times the course was taught, It would be In favor of the 1983 (non-Cleanroom)

group because the modular design portion of the course was presented earlier. It was

also the second time F. T. Baker had taught the course. -e that the teams in the

non-Cleanroom group applied a development approach similar to the "disciplined team"

approach examined in an earlier study tBasill & Reiter 81].

The first document every team in either group turned In contained a system

specification, composite design diagram, and implementation plan. The latter element

was a series of milestones describing when the various functions within the system

would be available. At these various dates (minimum one week apart, maximum two),

teams from both groups would then submit their systems for testing. An independent

party would then apply statistically based testing to each of these deliveries and report

to the team members both the successful and unsuccessful test cases. The latter would

SimpI-T Is a structured language that supports several string and file handling
primitives. In addition to the usual control flow constructs available, for example, In
Pascal. If Pascal or FORTRA-N had been chosen. it would have been very likely that
some Individuals would have had extensive experience with the language, and this would
have blased the comparison. Also, restricting access to a compiler that produced execut-
able code would have been very difficult.

be Included In the next test session for verification. Recall that the Cleanroom teams

could not execute their programs - they had editing and syntax-checking capabilities

only. They had to rely on the techniques of code reading, structured walkthroughs, and

Inspections to prepare their programs before submission. On the other hand, the non-

Cleanroom teams had full access to compilation and execution facilities to test their sys-

tems prior to Independent testing.

All team projects were evaluated on the use of the development techniques

presented In class, the Independent testing results, and a final oral Interview. In addi-

tion to these sources, Information on the team projects was collected from a background

questionnaire, a postdevelopment attitude survey, static source code analysis, and

operating system statistics. The following section briefly describes the operationally

based testing process applied to all projects by the Independent tester.

3.2. Operational Testing of Projects

The testing approach used In Cleanroom Is to simulate the developing system's

envIronment by randomly selecting test data from an "operational profile," a frequency

dhstrIbuitlon of Inputs to the system [Thayer, Llpow & Nelson 78, Duran & Ntafos 811.

The projects from both groups were tested Interactively at the milestones chosen by

each team by an Independent party (L.e., R. V. Selby). A distribution of Inputs to the

system was obtained by Identifying the logical functions In the system and assigning

each a frequency. This frequency assignment was accomplished by polllng eleven well-

.-ea.soned iisers of the University of Maryland Vax 11/780 malllng system. Then test

,ata were generated randomly from this profile and presented to the system. Recording

7

Figure 9. Breakdown of responses to the attitude survey question, "Did you miss
the satisfaction of executing your own programs?".

13 - Yes, I missed the satisfaction of program execution.
11 - I somewhat missed the satisfaction of program execution.
4 - No, I did not miss the satisfaction of program execution.

Fksture 10. Relationship of program size vs. missing program execution.

10.0 -- + -- + - -- +

Yes- I E

+ +

DJC
I I

Missed G B
Program + +
Execution I

Some-

+ F A +

H j

4.0 --------------- ------ -------

921.0 2001.0

No (3.0) Source Lines

Spearman correlations: -. 85 (sIgnIf. = .002) with source lines; -.70 (s!gnlf. - .03) with
number separately compIlable modules: -. 57 (signIf. = .09) with number pro-
cedures and functions.

Figure 11 displays the replies of the developers when they were asked how their

design and coding style was affected by not being able to test and debug. At first It

would seem surprising that more people did not modify their development style when

21

4.2.1. Summary of the Effect on the Development Process

Summarizing the effect on the development process, Cleanroom developers 1) felt

they applied off-line review techniques more effectively, while non-Cleanroom teams

focused on functional testing; 2) spent less time on-line and used fewer computer

resources; and 3) made all their scheduled deliveries.

4.3. Characterization of the Effect on the Developers

The first question posed In this goal area Is whether the Individuals using Clean-

room missed the satisfaction of executing their own programs. Figure 9 presents the

responses to a question Included In the postdevelopment attitude survey on this Issue.

As might be expected, almost all the Individuals missed some aspect o f program execu-

tion. -s might not be expected, however, this missing of program execution had no

relatlon to either the product quality measures mentioned earlier or the teams' profes-

slonal or testing experience. Also, missing program execution did not Increase with

respect to program size (see Figure 10).

20

Schedule slippage continues to be a problem in software development. It would be

interesting to see whether the Cleanroom teams demonstrated any more discipline by

maintaining their original schedules. All of the teams from both groups planned four

releases of their evolving system, except for team 'G' which planned five. Recall that at

each delivery an Independent party would operationally test the functions currently

available in the system, according to the team's implementation plan. In Figure 8, we

observe that all the teams using Cleanroom kept to their original schedules by making

all planned deliveries; only two non-Cleanroom teams made all their scheduled

deliveries.

Flzure 8. Number of system releases.

- J

I

H
F
E
D
C

B
A G

e c
d a b

0 1 2 3 4 5 6

Mann-Whltney signif. = .006

9 Non-Cleanroom team 'e' entered a substantial portion of Its system on a remote
machine, only using the Univac computer mainly for compilation and execution. (See
Distinction Among Teams.)

19

were unable to rely on testing methods, they may have (felt they had) applied the off-

line review techniques more effectively.

Since the role of the computer is more controlled when using Cleanroom, one would

expect a difference In on-line activity between the two groups. Figure 7 displays the

amount of connect time that each of the teams cumulatively used. A comparison of the

cpu-time used by the teams was less statistically significant (;\4NV = .110). Neither of

these measures of on-line activity related to how effectively a team felt they had used

the off-line techniques when either all teams or just Cleanroom teams were considered.

Although non-Cleanroom team 'd' did a lot of on-line testing and non-Cleanroom team

'e' did little, both teams performed poorly In the measures of operational product qual-

Ity discussed earlier. The operating system of the development machine captured these

system usage statistics. Note that the time the Independent party spent testing Is

Included. 8 These observations exhibit that Cleanroom developers spent less time on-line

and used fewer computer resources. These results empirically support the reduced role

of the computer In Cleanroom development.

Fliure 7. Connect time In hours during project development. 9

G
EC I HF D JA

e b c a d
+--- -- -- - ------ ----- 4----.

0.0 155.0

Iann-Whitney slgnif. = .089

SWhen the time the independent tester spent Is not Included, the significance levels
for the non-parametric statistics do not change.

18

Figure 8. Breakdown of responses to the attitude survey question, "Did you feel
that you and your team members effectively used off-line review techniques In

testing Your projlect?". (Responses are from Cleanroom teams.)

14 - Yes, they were effective for testing all parts of the program
5.5 - We used them but felt that they were only appropriate for certain parts of the

program
8.5 - We used them occasionally, but they were not really a major contributing factor

to the development
0 - Did not really use them at all

feeling of effective use of
off-line review techniques: both groups

(team 'e' does not appear because of lack of response)

J
H

E I G
D F A C B

d c a b

did not use effective for
all parts

Mann-Whitney signif. = .065

The histogram In Figure 8 shows that the Cleanroom developers felt they applied

the off-line review techniques more effectively than did the non-Cleanroom teams. The

non-Cleanroom developers were asked to give a relative breakdown of the amount of

time spent applying testing and verification techniques. Their aggregate response was

390- off-line review, 521 functional testing, and 9% structural testing. From this

breakdown, we observe that the non-Cleanroom teams primarily relled on functional

testing to prepare their systems for Independent testing. Since the Cleanroom teams

7 There are half-responses because an Individual checked both the second and third
choices. The responses total to 28, not 30, because two separate teams lost a member
late In the project. (See Distinction Among Teams).

17

*the teams (R =.58; signir. =.023). Neither professional nor testing experience corre-

I lated with off-line review effectiveness when either all teams or just Cleanroom teams

were considered.

4.1.4. Summary of the Effect on the Product Developed

In summary, Cleanroom developers delivered a product that 1) met system require-

ments more completely, 2) had a higher percentage of successful test cases, 3) had more

comments and less dense complexity, and 4) used more global data Items and a higher

percentage of assignment statements. The more successful Cleanroom developers 1)

used more procedure calls and if statements, 2) used fewer case and while statements, 3)

reused variables less frequently, 4) developed subroutines requiring less (software sci-

ence) effort to comprehend, and 5) had more general programming language experience.

4.2. Characterization of the Effect on the Development Process

In a postdevelopment attitude survey, the developers were asked how effectively

they felt they applied off-line review techniques In testing their projects (see Figure 6).

This was an attempt to capture some or the information necessary to answer the first

question under this goal (question II.A). In order to make comparisons at the team

level, the responses from the members of a team are composed Into an average for the

team. The responses to the question appear on a team basis In a histogram In the

second part of the figure. Of the Cleanroom developers, teams 'A,' 'D,' 'E,' 'F,' and '

were the least confident in their use of the off-line review techniques and these teams

also performed the worst In terms of operational testing results; four of these five teams

performed the worst In terms of Implementation completeness. Off-line review

effectiveness correlated with percentage of successful operational tests (without duplicate

failures) for the Cleanroom teams (Spearman R = .74: signif. = .014) and for all the

teams (R - .76; slgnlf. = .001); It correlated with implementation completeness for all

15

Considering the products from all teams, both percentage of successful test cases

(without duplicate failures) and Implementation completeness had some correlation with

percentage of if statements (R - .48, slgnlf. - .07, and R - .45, signif. - .09, respec-

tively) and some negative correlation with percentage of case statements (R = -. 48, sig-

-. nIf. - .07, and R = -. 42, signlf. = .12, respectively). Neither of the operational pro-

duct quality measures correlated with percentage of assignment statements when either

all products or just Cleanroom products were considered. These observations suggest

that the more successful Cleanroom developers simplified their use of the Implementa-

tion language; I.e., they used more procedure calls and If statements, used fewer case

and while statements, had a lower frequency of variable reuse, and wrote subroutines

requiring less software science effort to comprehend.

4.1.3. Contribution of Programmer Background

Vhen examining the contribution of the Cleanroom programmers' background to

the quality of their final products, general programming language experience correlated

with percentage of successful operational tests (without duplicate failures: Spearman R

.68, slgnlf. = .04; with duplicates: R = .70, slgnIf. = .03) and with Implementation

completeness (R - .55; signif. .10). No relationship appears between either opera-

tional testIng results or Implementation completeness and either professional 6 or testing

experience. These background/quality relations seem consistent with other studies

[Curtis 83].

• 6 In fact, there are very sllght negative correlatlons between years of professional ex-

* -perlence and both percentage of successful tests (without duplicate failures: R - -.46,
signif. S .1) and Implementation completeness (R = - .47, slgnlf. - .17).

14

o o0 i .-

lower complexity density (MW = .079) than did those using the traditional approach.

A calculation of either software science effort [Halstead 77], cyclomatlc complexity

[MNcCabe 78], or syntactic complexity without any size normalization, however, produced

no significant differences (NEW > .10). This seems as expected because all the systems

were built to meet the same requirements.

Comparing the data usage In the systems, Cleanroom developers used a greater

number of global data Items (M'vV = .071). Also, Cleanroom projects possessed a higher

percentage of assignment statements (VIV = .056). These last two observations could

be a manifestation of teaching the Cleanroom subjects modular design later In the

course (see Case Study Description), or possibly an Indication of using the approach.

Some Interesting observations surface when the operational quality measures of the

Cleanroom products are correlated with the usage of the Implementation language.

Both percentage of successful test cases (without duplicate failures) and Implementation

completeness correlated with percentage of procedure calls (Spearman R = .65, slgnlf.

- .044, and R = .57, signIf. = .08, respectively) and with percentage of If statements

(R = .82, signif. = .058, and R = .55, signif. = .10, respectively). However, both of

these two product quality measures correlated negatively with percentage of case state-

ments (R -- -. 86. slgnif. = .001, and R - -. 69, signif. = .027, respectively) and with

percentage of while statements (R = -. 65, signif. = .044, and R = -. 49, slgnif. = .15,

respectively). There were also some negative correlations between the product quality

measures and the average software science effort per subroutine (R = -. 52. slgnif. -

.12, and R = -. 74, slgnif. = .013, respectively) and the average number of occurrences

of a variable (R = -. 54, signif. = .11, and R = -.56, signif. - .09, respectively).

13

operational testing by Independent testers. Since both groups of teams had independent

testing of all their deliveries, the early testing of deliveries must have revealed most

faults overlooked by the Cleanroom developers.

These comparisons suggest that the non-Cleanroom developers focused on a "per-

spective of the tester," sometimes leaving out classes of functions and causing a less

completely Implemented product and more (especially unique) failures. Off-line review

techniques, however, are more general and their use contributed to more complete

requirement conformance and fewer failures In the Cleanroom products. In addition to

examining the operational properties of the product, various static properties were com-

pared.

4.1.2. Static System Properties

The first question In this goal area concerns the size of the final systems. Figure 3

showed the number of source lines, executable statements, and procedures and functions

for the various systems. The projects from the two groups were not statistically

different (NI\V > .10) In any of these three size attributes. Another question In this goal

area concerns the readability of the delivered source code. Two aspects of reading and

modirying code are the number of comments present and the density of the "complex-

Ity." In an attempt to capture the complexity density, syntactic complexity [Basill &

4 Hutchens 83] was calculated and normalized by the number of executable statements.

In addition to control complexity, the syntactic complexity metric considers nesting

depth and prime program decomposition [Linger, Mills & \Vitt 791. The developers

using Cleanroom wrote code that was more highly commented (M W .089) and had a

4 12

S-

failures, even though they did better overall. This demonstrates that while reviewing

the code, the Cleanroom developers focused less than the other groups on certain parts

of the system. The more uniform review of the whole system makes the performance of

the system less sensitive to its operational profile. Note that operational environments

of systems are usually diffIcult to define a priori and are subject to change.

Figure 5. Percentage of successful test cases during operational testing (without
duplicate failures).

D J H
E I FA BGC

C

d e b a

58.0 100

Mann-Vhltney signif. - .055

In both of the product quality measures of Implementation completeness and opera-

tional testing results, there was quite a variation In performance.5 A wide variation may

have been expected with an unfamiliar development technique, but the developers using,

a more traditional approach had a wider range of performance than did those using

Cleanroom In both of the measures (even with twice as many Cleanroom teams). All of

the above differences are magnified by recalling that the non-Cleanroom teams did not

develop their systems In one monolithic step, they (also) had the benefit of periodic

A An alternate perspective Includes only the more successful projects from each
group In the comparison of operational product quality. When the best 00%,o from each
approach are examined (I.e., removing teams 'd,' 'e,' 'A,' 'E,' 'F,' and '1'), the Mann-
Whitney signlficance level for comparing Implementation completeness becomes .045 and

* the slnlficance level for comparing successful test cases (without duplicate failures) be-
comes .034. Thus, comparing the best teams from each approach increases the evidence
In favor of Cleanroom In both of these product quality measures.

11

*- ..- . .-- - . . . - - - - - -. .. .' . ,

Figure 4. Requirement conformance of the systems.

J D

I FE A BGCH
de b c a

0 16 32

SIII I
.22%/ 58 % 91 % 100

Mann-Whitney 2 slgnlf. = .088

To compare testing results among the systems developed In the two groups, fifty

* random user-session test cases were executed on the final release of each system to simu-

late Its operational environment. If the final release of a system performed to expecta-

tlons on a test case, the outcome was called a "success;" If not, the outcome was a

"failure." If the outcome was a "failure" but the same failure was observed on an earlier

test case run on the final release, the outcome was termed a "duplicate failure." Figure

.5 shows the percentage of successful test cases when duplicate failures are not Included.

The figure displays that Cleanroom projects had a higher percentage of successful test

cases at system delivery. 3 vVhen duplicate failures are Included, however, the better

performance of the Cleanroom systems is not nearly as significant (MW .134) 4 This

Is caused by the Cieanroom projects having a relatively higher proportion of duplicate

2 The significance levels for the Mann-Whitney statistics reported are the probabilI-
ty of Type I error In an one-talled test.

3 Although not considered here, various software reliability models have been pro-
* posed to forecast system reliability based on failure data [Musa 75, Currlt 83, Goel 831.

4 To be more succinct, IMV will sometimes be used to abbreviate the significance
level of the Mann-Whitney statistic.

10
O

4.1. Characterization of the Effect on the Product Developed

This section characterizes the differences between the products delivered by both of

the development groups. Initially we examine some operational properties of the pro-

ducts, followed by a comparison of some of their static properties.

4.1.1. Operational System Properties

In order to contrast the operational properties of the systems delivered by the two

groups, both completeness of Implementation and operational testing results were exam-

Ined. A measure of implementation completeness was calculated by partitioning the

required system Into sixteen logical functions (e.g., send mail to an Individual, read a

piece of mall, respond, add yourself to a mailing list, ...). Each function In an Imple-

mentation was then assigned a value of two If It completely met Its requirements, a

value of one If It partially met them, or zero If It was Inoperable. The total for each

system was calculated; a maximum score of 32 was possible. Flgure 4 displays this sub-

jectIve measure of requirement conformance for the systems. Note that In all figures

presented, the ten teams using Cleanroom are In upper case and the five teams using a

more conventional approach are In lower case. A first observation is that six of the ten

Cleanroom teams built very close to the entire system. While not all of the Cleanroom

teams performed equally well, a majority of them applied the approach effectively

enough to develop nearly the whole product. More Importantly, the Cleanroom teams

met the requirements of the system more completely than did the non-Cleanroom teams.

S9

w7

of failure severity and times between failure took place during the testing process. The

operational statistics referred to later were calculated from fifty user-session test cases

run on the final system release of each team. For a complete explanation of the opera-

tlonally based testing process applied to the projects, Including test data selection, test-

Ing procedure, and failure observation, see [Selby 84].

4. Data Analysis and Interpretation

The analysis and Interpretatlon of the data collected from the study appear In the

following sections, organized by the goal areas outlined earlier. In order to address the

Le various questions posed under each of the goals, some raw data usually will be presented

and then Interpreted. Figure 3 presents the number of source lines, executable state-

ments, and procedures and functions to give a rough view of the systems developed.

Figure 3. System statlstics.

Team Cleanroom Source Executable Procedures &

Lines Statments Functions
A yes 1681 813 55

B yes 1626 717 42
C yes 1118 573 42
D yes 1046 477 30
E yes 1087 624 32
F yes 1213 440 35

G yes 1196 581 31
H yes 1876 550 51
I yes 1305 608 23

J yes 1052 658 24

a no 824 410 26
b no 1429 633 18
c no 2264 999 46
d no 1629 626 67
e no 1310 459 43

' ' 8
0

applying the techniques of Cleanroom. Several persons mentioned, however, that they

already utilized some of the Ideas In Cleanroom. Keeping a simple design supports rea-

dability of the product and facilitates the processes of modification and verification.

Although some of the objective product measures presented earlier showed differences In

development style, these subjective ones are Interesting and lend Insight Into actual pro-

grammer behavior.

Figure 11.
Breakdown of responses to the attitude survey question, "How was your design
and coding style affected by not being able to test and debug?".

2 - Yes, my style was substantially revised.
15 - I modified some of my tendencies.
11 - It did not affect my style at all.

Frequently mentioned responses Include
- kept design simple, attempted nothing fancy
- kept readability of code In mind
- already was a user of off-line review techniques
- very careful scrutiny of code for potential mistakes
- prepared for a larger range of Inputs

One indicator of the. Impression that something new leaves on people Is whether

they would do It again. Figure 12 presents the responses of the Individuals when they

were asked whether they would choose to use Cleanroom as either a software develop-

ment manager or as a programmer. Even though these responses were gathered

(Immediately) after course completion, subjects deslrlng to "please the Instructor" may

have responded favorably to this type of question regardless of their true feelings. Prac-

tically everyone Indicated a wllllngness to apply the approach again. It Is Interesting to

note that a greater number of persons In a managerial role would choose to always use

It. Or the persons that ranked the reuse of Cleanroom fairly low In each category. four

22

of the five were the same people. Of the six people that ranked reuse low, four were

from less successful projects (one from team 'A', one from team 'E' and two from team

'I'), but the other two came from reasonably successful developments (one from team 'C'

and one from team J). The particular individuals on teams 'E,' 'I,' and 'J' rated the

reuse fairly low In both categorles.

Figure 12.
Breakdown of responses to the attitude survey question, "Would you use

Cleanroom again?". (One person did not respond to this question.)

As a software development manager?
8 - Yes, at all times

14 - Yes, but only for certain projects
5 - Not at all

As a programmer?

4 - Yes, for all projects
18 - Yes, but not all the time

5 - Only If I had to
0 - I would leave If I had to

4.3.1. Summary of the Effect on the Developers

In summary of the effect on the developers, most Cleanroom developers 1) modified

In part their development style, 2) missed program execution, and 3) Indicated they

would use the approach again.

4.4. Distinction Among Teams

In spite of efforts to balance the teams according to various factors (see Case Study

Description), a few differences among the teams were apparent. Two separate Clean-

room teams, 'H' and 'I,' each lost a member late In the project. Thus at project comple-

tion. there were elght three-person and two two-person Cleanroom teams. Recall that

23

team 'H' performed quite well according to requirement conformance and testing results,

while team 'I' did poorly. Also, the second group of subjects did not divide evenly Into

three-person teams. Since one of those Individuals had extensive professional experience,

non-Cleanroom team 'e' consisted of that one highly experienced person. Thus at pro-

ject completion, there were four three-person and one one-person non-Cleanroom teams.

Jlthough team *e' wrote over 1300 source lines, this highly experienced person did not

do as well as the other teams In some respects. This Is consistent with another study In

which teams applying a "disciplined methodology" In development outperformed Indivi-

duals [Basill & Reiter 81]. Appendix A contains the significance levels for the above

results when team 'e,' when teams 'H' and 'I,' and when teams 'e,' 'H,' and 'I' are

removed from the analysis. Removing teams 'H' and 'I' has little effect on the

significance levels, while the removal of team 'e' causes a decrease In all of the

signlficance levels except for executable statements, software science effort, cyclomatlc

complexity, syntactic complexity, connect-time, and cpu-time.

5. Conclusions

This paper describes "Cleanroom" software development - an approach Intended to

produce highly rellable software by Integrating formal methods for specification and

design. complete off-line development, and statistically based testing. The goal struc-

ture. experimental approach, data analysis, and conclusions are presented for a

replicated-project study examining the Cleanroom approach. This Is the first Investig.a-

tlon known to the authors that applied Cleanroom and characterized Its effect relative

to a more traditional development approach.

24

. ° : : : . - °

' . The data analysis presented and the testimony provided by the developers suggest

that the major results of this study are 1) most developers were able to apply the tech-

niques of Cleanroom effectively; 2) the Cleanroom teams' products met system require-

ments more completely and had a higher percentage of successful test cases; 3) the

source code developed using Cleanroom had more comments and less dense complexity;

4) the use of Cleanroom successfully modified aspects of development style; and 5) most

Cleanroom developers Indicated they would use the approach again.

It seems that the Ideas In Cleanroom help attaln the goals of producing high quality

software and Increasing the discipline In the software development process. The com-

plete separation of development from testing appears to cause a modification In the

developers' behavior, resulting In Increased process control and In more effective use of

formal methods for software specificatlon, design, off-line revIew, and verification. It

seems that system modlficatlon and maintenance would be more easily done on a pro-

duct developed In the Cleanroom method, because of the product's thoroughly conceived

design and higher readability. Thus, achieving high requirement conformance and high

operational reliability coupled with low maintenance costs would help reduce overall

costs, satisfy the user community, and support a long product lifetime.

This empirical study Is Intended to advance the understanding of the relatlonship

between Introducing discipline Into the development process (as In Cleanroom) and

several aspects of product quality: conformance with requirements, high operational rell-

ability, and easily modflable source code. The results given were calculated from a set

of teams applying Cleanroom development on a relatively small project - the direct

extrapolation of the findings to other projects and development environments Is not

25

0A!.1

Implied. Valuable Insights, however, have been gained from the analysis.

6. Acknowledgement

The authors are grateful to D. H. Hutchens and R. W. Reiter for the use of their

analysis program In this study.

7. Appendix A.

Figure 13 presents the measure averages and the significance levels for the above

comparisons when team 'e,' when teams 'H' and 'I,' and when teams 'e,' 'H,' and 'I' are

removed. The significance levels for the Mann-Whitney statistics reported are the pro-

babillty of Type I error In an one-tailed test.

Figure 13. Summary of measure averages and significance levels.
Measure Average Mann-Whitney significance levels

Cleanroom Non-Cleanroom All Without Without Without
Teams Teams Teams Team e Teams H.I Teams eH.I

Source lines 1320.0 1491.2 .196 .240 .153 .198
Executable struts 604.1 625.4 .500 .286 .442 .367
#Procedures &

functions 36.5 40.0 .357 .500 .330 .500
%Implementation

completeness 82.5 60.0 .088 .197 .093 .196
%Successful tests (w/o

duplicate failures) 92.5 80.8 .055 .128 .053 .116
%Successful tests (w/

duplicate failures) 78.7 59.2 .134 .285 .151 .304

#Comments 194.9 122.2 .089 .102 .190 .198
Syntactic complexity/

executable stmts 1.5 1.6 .079 .179 .082 .175
Software- Science E 6728.6e3 7355.4e3 .451 .240 .442 .248
Cyclomatic complexity 196.8 212.2 .250 .198 .255 .248

* Syntactic complexity 917.5 1017.0 500 .286 .500 .305
#Global data items 37.6 24.2 .071 .129 .053 .117
%Assignment stints 34.2 26.6 .056 .129 040 .087
Off-line effectiveness 3.2 2.5 .065 .065 .098 .098
Connect-time (hr.) 41.0 71.3 .089 .012 .121 .021
Cpu-time (min.) 71 7 136.1 .110 .017 .072 .009
#Deliveries 4.1 2.6 .006 .015 .010 .022

26

8. References

[Baker 721
F. T. Baker, Chief Programmer Team Management of Production Program-
ming, LBIV Systems J. 11, 1, pp. 131-149, 1972.

(Baker 811
F. T. Baker, Chief Programmer Teams, pp. 249-254 In Tutorial on Struc-
tured Programming: Integrated Practices, ed. V. R. Basill and F. T. Baker,
IEEE, 1981.

[Basill & Turner 78]
V. R. Basill and A. J. Turner, SI MPL-T: A Structured Programming
Language, Paladin House Publishers, Geneva, IL, 1978.

[BasIll & Reiter 81]
V. R. Basill and R. W. Relter, A Controlled Experiment Quantitatively
Comparing Software Development Approaches, IEEE Trans. Software Engr.
SE-7, May 1981.

(Basili & Hutchens 83]
V. R. Baslli and D. H. Hutchens, An Empirical Study of a Syntactic Metric
Family, Trans. Software Engr. SE-9, 8, pp. 664-872, Nov. 1983.

[BasIli & Selby 84]
V. R. Basill and R. W. Selby, Jr., Data Collection and AnalysIs In Software
Research and Management, Proceedings of the American Statistical Associa-
tion and Biometric Society Joint Statistical Meetings, Philadelphia, PA, Au-
gust 13-16, 1984.

[Basill &W elss 84]
V. R. BasIll and D. M. Weiss, A Methodology for Collecting Valid Software
Engineering Data*, Trans. Software Engr. SE- , 8, pp. 728-738, Nov. 1984.

[Currit 83]
P. A. Currit, Cleanroom Certification Model, Proc. Eight Ann. Software
Engr. Workshop, NASA/GSFC, Greenbelt, &ED, Nov. 1983.

[Curtis 83]
B. Curtis, Cognitive Science of Programming, Sixth Winnowbrook Workshop
on Software Performance Evaluation, Blue Mountain Lake, NY, July 19-22,
1983.

27

6:"..

[Duran & Ntafos 811
J. W. Duran and S. Ntatos, A Report on Random Testing*, Proc. Fifth Int.

Conf. Software Engr., San Diego, CA, pp. 179-183, March 9-12, 1981.

[Dyer & Mills 82]
M. Dyer and H. D. Mills, Developing Electronic Systems with Certifiable Re-
liability, Proc. NATO Conf, Summer, 1982.

(Dyer 82]
M. Dyer, Cleanroom Software Development Method, IBM Federal Systems
Division, Bethesda, MD, October 14, 1982.

(Dyer 83]
M. Dyer, Software Validation In the Cleanroom Development Method, IBM-
FSD Tech. Rep. 86.0003, August 19, 1983.

[Fagan 781
M. E. Fagan, Design and Code Inspections to Reduce Errors In Program De-
velopment, IBM Sys. J. 15, 3, pp. 182-211, 1976.

[Ferrentino & Mills 771
A. B. Ferrentlno and H. D. Mills, State Machines and Their Semantics In
Software Engineering, Proc. IEEE COMPSAC, 1977.

'Goel $3]
A. L. Goel, A Guidebook for Software Reliability Assessment, Dept. Industri-
al Engr. and Operations Research, Syracuse Univ., New York, Tech. Rep.
83-11, April 1983.

[Halstead 771
M. H. Halstead, Elements of Software Science, North Holland, New York,
1977.

[Hoare 69]
C. A. R. Hoare, An Axiomatic Basis for Computer Programming, Communi-

*n cations of the ACM 12, 10, pp. 578-583, Oct. 1969.

Howden 76]
V. E. Howden, Reliability of the Path Analysis Testing Strategy, IEEE
Trans. Software Engr. SE-2, 3, Sept. 1976.

rLinger, Mills & \Vitt 79]
R. C. Linger, H. D. Mills, and B. I. Witt, Structured Programming: Theory
and Practice. Addlson- Wesley, Reading, M'-iA, 1979.

* 28

[,McCabe 761
T. J. McCabe, A Complexity Measure, IEEE Trans. Software Engr. SE-2, 4,
pp. 308-320, Dec. 1978.

[(Mills 72a]
H. D. Mills, Chief Programmer Teams: Principles and Procedures, IBM
Corp., Galthersburg, MD, Rep. FSC 71-6012, 1972.

[Mills 72b]
H. D. Mills, Mathematical Foundations for Structural Programming, IBM
Report FSL 72-8021, 1972.

[Musa 751
J. D. Musa, A Theory of Software Reliability and Its Application, IEEE
Trans. Software Engr. S1-i, 3, pp. 312-327, 1975.

[Myers 781
G. J. Myers, Software Reliability: Principles 8F Practices, John Wiley & Sons,
New York, 1976.

[Parnas 72]

D. L. Parnas, On the Criteria to be Used In Decomposing Systems Into

Modules, Communications of the ACM 15, 12, pp. 1053-1058, ig72.

[Selby 84]
R. V. Selby, Jr., A Quantitative Approach for Evaluating Software Techno-
logies, Dept..Com. Scl., Univ. Maryland, College Park, Ph. D. Dissertation,
1984.

(Shankar 82]
K. S. Shankar, A Functional Approach to Module Verification. IEEE Trans.
Software Engr. SE-8, 2, March 1982.

[Thayer, Lipow & Nelson 78]
R. A. Thayer, M. Lipow, and E. C. Nelson, Software Reliability, North-
Holland, Amsterdam, 1978.

29

FILMED

15-85

DTIC

